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ABSTRACT 

It is known that a prime ring which satisfies a polynomial identity with 
derivations applied to the variables must satisfy a generalized polynomial 
identity, but not necessarily a polynomial identity. In this paper we detemine 
the minimal identity with derivations which can be satisfied by a non-PI prime 
ring R. The main result shows, essentially, that this identity is the standard 
identity $3 with D applied to each variable, where D = ad(y)for  y in R, y- '= 0, 
and y of rank one in the central closure of R. 

A prime ring which satisfies a polynomial identity certainly satisfies the same 

identity with derivations acting on the variables. On the other hand, if a prime 

ring satisfies a polynomial identity with derivations applied, then it follows from 

work of V. K. Kharchenko [5] that the ring must satisfy a generalized polynomial 

identity, but need not satisfy any polynomial identity, by an example of A. 

Kovacs [6]. The purpose of this paper is to determine the minimal polynomial 

identities with derivation which can be satisfied by a prime ring not satisfying a 

polynomial identity. Now since any such prime ring does satisfy a generalized 

polynomial identity, it follows from a well known result of W. S. Martindale [8] 

that the central closure of the ring is primitive with nonzero socle and its 

associated division ring is finite dimensional over its center. Thus, it is not 

surprising that our study of minimal polynomial identities with derivations 

reduces to the consideration of such identities for primitive rings with nonzero 

socle. By careful calculation in such rings we can show that any minimal 

polynomial identity with derivations is a sum of identities S3(x ~, ya, z,~) for d an 

inner derivation determined by an element of rank one and square zero, where 

S3(x, y, z) is the standard identity of degree three. 

We begin with some notation and a discussion of what we mean by "minimal 
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polynomial identity with derivations." Throughout the paper R will denote a 

prime ring with extended centroid C (see [8]). Let C{X} be the free algebra over 

C in a set of indeterminates X, indexed by the positive integers, and let Der(R) 

be the Lie ring of derivations of R. For any p E C{X} and suitable n, p lies in the 

subalgebra C{x~, . . . ,  x, } and we write p = p(x~ . . . . .  x,). Call 

p(x, . . . . .  x, ) ~  C{X} -{0}  a polynomial differential identity, or PDI, for R if for 

k = n there are d~ . . . . .  dk E D e r ( R ) -  {0}, so that for all (ri . . . . .  r,) E R", 

p(r~',. ~k . . . , r n ) = 0 ,  • • ~ rk  ~ rk+l, 

where r d denotes the image of r under d. When it is convenient to do so, we will 

consider a PDI p to be a function of the variables {x~', . . .  ,Xk,Xk÷,...,~k Xn}. 
u' . u~ , X,) for R, let deg(p) be the usual degree Given a PDI p(x~ . . . .  x~, xk÷t . . . .  

of p, and let D-deg(p) denote the degree of p in those variables {x~ . . . . .  xk} 

to which derivations have been applied. We shall say that p is of type 

(D-deg(p), deg(p)), and we order types by setting (k, n) < (k', n') if either k < k' 

or if k = k' and n < n'. If R satisfies a polynomial identity, then R satisfies a 

PDI of type (0, n). A PDI p for R is minimal if it is of minimal type among all 

PDIs for R. Our goal is to find what type is minimal over all non-PI prime rings 

R, and then to describe the PDIs of this type. It will turn out that the description 

is the same if we had defined minimal type by first minimizing degree, and then 

D-degree. 
Any PDI for R can be linearized in the usual way to get a PDI which is linear 

in each variable. Although the iinearization may increase the number of 

variables which have a derivation applied, it does not increase the type of the 

original PDI. Furthermore, if p(x~ . . . . .  xn) is such a linearized PDI for R, then so 

are both p(x~, . . . ,  x,_~, 0) and p - p ( x i  . . . . .  xn-~, 0). Repetition of this procedure 

for arbitrary subsets of {x~,... ,  xn} shows that p may be written as a sum of PDIs 

for R, each of which is multilinear, homogeneous, and of type not exceeding the 

type of p. Consequently, in determining what the minimal type is, we may 

restrict our attention to PDIs which are multilinear and homogeneous. Hence- 

forth, our use of the term multilinear PDI will mean both multilinear and 

homogeneous. 

Next we give some explicit examples of multilinear PDIs satisfied by non-PI 

prime rings. These examples are crucial to our investigation since they severely 

limit the types of PDIs which can be minimal. Our first example is one discussed 

by Kovacs [6] who used it to produce a multilinear PDI of type (4p + 1,4p + 1) in 

characteristic p, and of type (9, 9) in characteristic zero. By using a different 

approach one easily obtains a characteristic free example of smaller type. 
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EXAMPLE 1. Let  R be the ring of countable by countable row finite matrices 

over a field F, and let d be the inner derivation of R given by r a = [r, en], where 

e .  is the usual upper left matrix unit. Regarding R as the ring of linear 

transformations acting on the right of a countable dimensional vector space over 

F, it is clear that r u has rank at most two for every r E R. A straightforward 

computation shows that r d satisfies a cubic polynomial x 3 + a x  E F i x ] .  I t  follows 

that R satisfies the PDI [[(x~)3, x 2 ] , [ x ~ , x 2 ] ]  of degree six. Linearizing this 

expression gives a multilinear PDI of type (4, 6), independent of the characteris- 

tic of F. 

We note that one could mimic the construction in Example 1 when F is 

replaced by a division ring D finite dimensional over its center F. In that case, r d 

is algebraic over F of bounded degree, so by commutation one could again 

obtain a PDI for R of rather large degree [4; p. 230]. Also, although our 

multilinear PDI is of smaller type  than the one obtained by Kovacs [6], we 

should point out that he was interested in obtaining a standard polynomial. Our  

next example shows that one can find a PDI by using S3(x,  y, z ) ,  and represents 

what will turn out to to be the typical (multlinear) PDI of minimal type. 

EXAMPLE 2. Let  R be as in Example 1 and choose a E R so that a 2 = 0 and 

a R  is a minimal right ideal of R. For example, one could take a = el2. Now for 

some e 2= e, a R  = e R ,  so e a  = a and e R e  ~ - e F  is a field. It follows that for 

r, s ~ R ,  a r a s a  = a s a r a .  Let d be the inner derivation defined by r a = [r ,a] ,  and 

let $3 be the standard polynomial of degree three. Then S3(x~, a d x2, x3) is a 

multilinear PDI for R. The verification of this fact is fairly easy. Observe that 

S3(ra  - ar, s a  - as,  ta  - a t )  is the product ( ra  - a r ) ( s a  - as)( ta  - a t )  = 

a r a s t a -  a r s a t a -  a r a s a t  + r a s a t a ,  together with similar expressions in each 

permutation of r, s, and t with the appropriate sign change. Using a x a y a  = 

a y a x a  it is straightforward to show that all terms cancel. 

In view of Example 2, we know that if p is a PDI of minimal type (k, n) over 

all non-PI prime rings, then k < 3. In fact, we shall show that no PDI for a 

non-PI prime ring can have type (k, n) with k < 3. We want to reduce to the case 

where R is a simple ring equal to its socle. Using the structure theory of such 

rings we can make the computations necessary to obtain the results we seek. 

Recall that C is the extended centroid of R, and let Q be the Martindale 

quotient ring of R (see [8]). One may regard Q as equivalence classes of left 

R-module  homomorphisms from ideals of R to R. For q E O there is a nonzero 

ideal J of R with J q  C R ,  and if J q  = 0 then q -- 0. It follows that R embeds in Q 

as right multiplications, and that C is the center of Q. It is easy to show that each 
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d E Der(R) extends to a derivation of Q ([5; p. 156] or [7]), so also extends to a 

derivation of C. Thus if p is a PDI for R, then each d~ ~ Der(R) appearing in p 

can be considered as a derivation of the prime ring RC C Q. Our first lemma 

implies that (C)d~ = 0 if p is of minimal type. 

LEMMA 1. If  p(x~' , . . . ,  X~ k, Xk+~,..., X,) is a multilinear PDI for R, then either 

(C)d~ = 0 for each i <= k, or R satisfies a PDI of smaller type. 

PROOF. Suppose that y d, # 0 for some i _-< k and some y E C. The definition 

of Q gives a nonzero ideal J of R satisfying Jy C R. Choose r~ E Jy and rj E R 

for j #  i, and evaluate p to obtain yd'q(r~', . . . .  r , ) = 0 ,  where q is p with x~' 
replaced by x~. Since yd, # 0, it suffices to show that q is a PDI for R, since q is of 

type ( k -  1, n). We know that substitutions into q give zero, but only if x~ is 

replaced by an element of J. Substituting arbitrarily for the other variables in q 

gives a linear polynomial h(x) = E a,xb,, where all a,, b, E RC  t_J {1}. Now 

h(J) = 0 so it follows ([3; proof of Lemma 1.3.2, pp. 22-23] or [7; Lemma 1]) that 

h(x) is actually an identity for R. Therefore, q is a PDI for R, proving the 

lemma. 

An immediate consequence of Lemma 1 is that any multilinear PDI of 

minimal type satisfied by R is also satisfied by RC. Now if R satisfies a 

multilinear PDI, then R satisfies a nonzero generalized polynomial identity [7; 

Theorem 8], [5; Corollary 5, p. 163], so RC is a primitive ring with nonzero socle 

and underlying division ring which is finite dimensional over C [8; Theorem 3, p. 

579]. Therefore, a multilinear PDI of minimal type can be considered as a PDI 

for RC, as just described, and C e' = 0 for each di appearing. Let H be the socle 

of RC and note that H is a simple algebra with centroid C, and H is infinite 

dimensional over C, unless R satisfies a polynomial identity. Also, if eH is a 

minimal right ideal of H, then erie is a finite dimensional division algebra over 

eC. Sihce H:  = H, it follows easily that H e C H for any d ~ Der(RC), so any 

multilinear PDI of minimal type for R is satisfied by H. Finally, if F is an 

algebraic closure of C, then H @ c F  is a simple ring equal to its socle and has 

(extended) centroid F. Furthermore, if d E Der(H)  and C d = 0 then d extends 

to a derivation of H @ F  by extending ( h @ a )  e =  ha@a,  and so H @ F  

satisfies any multilinear PDI satisfied by H. Consequently, to determine what 

type is minimal, it suffices to assume that R is a special ring as defined next. 

DEFINITION. A ring R is special if it is a non-Artinian simple ring which is 

equal to its socle, and if for every minimal idempotent e E R, ere  ~ F, the 

centroid of R. 
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The computations we will make in studying multilinear PDIs of minimal type 

require a number of standard or easy facts about non-Artinian simple rings 

which equal their socles, and we review these now. Let R be such a ring, eR a 

minimal right ideal, D -~ e re  the associated division ring, and F the centroid of 

R. Of course, when R is special, D = F. The statements we make are about right 

ideals, but each has an obvious analogue for left ideals. Also, for any nonempty 

subset B of R, l (B)  and r (B)  denote the left and right annihilators, respectively, 

of B in R, and Ann(B)  = l (B)  n r(B).  Now R is completely reducible as a right 

R-module,  so every right ideal is a direct sum of minimal right ideals. If a right 

ideal T is the direct sum of finitely many minimal right ideals, then the number 

of summands is unique and will be denoted by dim(T). In particular, dim(rR) is 

finite for any r E R. If T is a right ideal of R with dim(T) finite, then T = eR, for 

e an idempotent,  l (T)  = R(1 - e) = {r - re t r E R},  and r( l (T))  = T. For any 

nonzero e = e 2 E R, eRe ~ M, (D ) for n = dim(eR), and Ann(e),  sometimes 

written ( 1 -  e ) R ( 1 -  e), is isomorphic to R. A result which is critical for our 

calculations is Litoff's theorem [4; Theorem 3, p. 90] which we state now in the 

form most useful to us. 

THEOREM (Litoff). I f  R is a simple ring equal to its socle, then for {a~, . . . ,  a,} C 

R there is an idempotent e E R so that {a~,. . . ,  a,} C eRe. 

Our next Lemma is an easy consequence of Litoff's theorem and will be 

convenient to have for reference. 

LEMMA 2. Let R be a non-Artinian simple ring equal to its socle. I f  B is a .finite 

subset of R, then Ann(B)  contains an infinite set of orthogonal idempotents. 

PROOF. By Litoff's theorem, B C eRe, and since R is isomorphic to Ann(e)  C 

Ann(B),  it suffices to prove that R contains an infinite set of orthogonal 

idempotents. This fact is easy to obtain by using Zorn's  Lemma and Litoff's 

theorem again. 

A number of useful facts and observations concerning right ideals and 

derivations are combined in our next lemma. For B C R and d E Der (R)  we 

w r i t e B  ~ = { b  ~ I b E B } .  

LEMMA 3. Let R be a non-Artinian simple ring equal to its socle. I f  T is a 

nonzero right ideal of R and if d is a nonzero derivation of R, then the following 

hold: 

(1) r (Rd)  = I ( R " ) = 0 ;  

(2) T" = 0 implies T = 0; 
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(3) Tax = 0 for x ~ R, implies either x = 0 or TaT = 0; 

(4) if dim(T) is finite and TaT = 0, then T ~ C T; 

(5) T a C T implies l (T)  a C I(T); 

(6) T + T a is a right ideal of R ; and 

(7) if dim(T) is .finite then d im(T+  T a) is ]inite. 

PROOF. (1) If Rda = 0, then for x, y E R, 0 = (xy)aa = xdya, so the primeness 

of R forces a =0 ,  since d ~ 0 .  Thus r ( R a ) = 0 ,  and l ( R a ) = 0  follows from a 

similar argument. 

(2) If r E R  and t E  T then 0 = ( t r )  a = tr u, resulting in T C  I ( R a ) = 0  using 

(1). 

(3) If s, t E T, then 0 = (st)"x = satx. Since R is a prime ring, either TaT = 0 

or x - - 0 .  

(4) Choose x, y ~ T and r ~ R, write 0 = (xr)Uy = x%y + xray and multiply on 

the left by any element in l (T)  to obtain I ( T ) T d R T  = 0. Using the primeness of 

R, one must conclude that T ~ C r ( l (T ) )=  T, since dim(T) is finite. 

(5) Apply d to I ( T ) T  = O. 

(6) This follows from t% = (tr) ~ - tr a. 

(7) Since T = eR, T a = (eR)  a C eR + eaR. 

Our last preliminary result gives a condition concerning the action of a 

derivation on right ideals which forces the derivation to be zero. 

LEMMA 4. Let R be a non-Artinian simple ring equal to its socle. I f  d E 

Der(R), then the following are equivalent: 

(1) for each minimal right ideal T of R, T ~ C T; 

(2) for each right ideal T of R, T ~ C T; and 

(3) d = 0. 

PROOF. Since every right ideal of R is a sum of minimal right ideals, it is clear 

that (1) implies (2), so it suffices to prove that (2) implies (3). Let e be any 

nonzero idempotent in R and set T -- r(Re). By assumption T ~ C T so Lemma 

3 yields (Re)  d =(/(T))a C l ( T ) = R e .  Of course, (eR)a C eR also holds by 

assumption. Consequently e d E  eR fq Re  = eRe, so that e d =  ee%---e(e2)%-- 

ee% + ee% --2e d, resulting in e d --0. But R is a simple non-Artinian ring so is 

generated by its idempotents [2; Chapter 1], so R d =0 ,  forcing d = 0. 

We are now in a position to examine a multilinear PDI of minimal type which 

is satisfied by a non-Artinian simple ring with minimal right ideal. The next few 

results will show that the type must be (3, 3); in fact, that no multilinear PDI can 
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be of type (1, n) or (2, n). The first of these is a lemma which gives some 

important information abut which variables must have derivations applied. 

LEMMA 5. Let R be a non-Artinian simple ring equal to its socle, and 

p( x ~', . . . .  x ~ k, xk+~ . . . . .  x , )  a multilinear PDI  ( o[ type ( k, n ) ) satis[ied by R. Then 
J dl dk I either each monomial of p begins and ends with an element in tx~ , . . . ,  x k s, or R 

satisfies a multilinear PDI  o[ smaller type. 

PROOF. We prove only that each monomial of p begins with some x ~', since a 

similar argument would shbw that each monomial ends with such a variable. I.f 

the lemma were false, then n > 1 and one can write 

k n 

P = ,=l ~ x~'q, + i =~+1 x ,p i  where some ps~O. 

For i~  j choose r, E R and use Lemma 2 to find a nonzero idempotent e E l (B),  

where B =< k}U{r, li > k and i ~ j } .  Evaluating p with r~ replacing x, 
d l  

and er replacing xj, for any r ~ R, yields 0 =ep = erps(rl , . . . ,  r,). But R is a 

prime ring, e ~  0 and {r,} C R is arbitrary, so Ps is a multilinear PDI for R of type 

(k, n - 1), contradicting the minimality of (k, n) and thereby proving the lemma. 

An immediate consequence of Lemma 5 is that there is no PDI for R of type 

(1, n), which we record as our next lemma. 

LEMMA 6. I[ R is a non-Artinian simple ring equal to its socle which satis[ies a 

PDI of type (k, n), then k > 1. 

Lemma 5 puts strong restrictions on the form of a multilinear PDI of minimal 

type. The next step in our investigation is to show that the derivations appearing 

on the "ends"  of the monomials of the PDI are inner derivations. To do this, we 

need a general result which gives a criterion on the kernel of a derivation which 

forces the derivation to be inner. 

THEOREM 1. Let R be a non-Artinian simple ring with centroid F, with 

R = Soc(R), and with associated division ring which is [inite dimensional over F. 

I[ there are d E Der(R)  and an idempotent e ~ R so that [~= 0 for every 

idempotent [ E Ann(e),  then r d = [r, a] [or a ~ ere. 

PROOF. Since Ann(e)  is isomorphic to R, it is generated as a ring by its 

idempotents, from which (Ann(e))  a = 0 follows. Now e(Ann(e))  = (Ann(e))e = 

0, so applying d shows that e d E Ann(Ann(e))  = eRe, or equivalently, d induces 

a derivation on ere.  Thus e a = 0, since e is the identity of eRe, and also the 
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extension of d to F is zero, since F Ann(e )C  Ann(e )C  Ker(d).  It follows that 

(Fe) ~ =0 .  But Fe is the center of the simple Artinian ring eRe, so we may 

conclude that the restriction of d to eRe is the inner derivation induced by 

A EeRe.  Now h = d - a d ( A ) E D e r ( R ) ,  where ( r ) a d A = r A - A r ,  and 

(eRe)h = (Ann(e))h = 0. 

Next, we compute the effect of h on e l ( e ) = e R ( 1 - e ) .  Let g2= 

g E A n n ( e ) - { 0 }  and consider exg E e R ( 1 - e ) .  Certainly e + g is an idempo- 

tent, e x g E ( e + g ) R ( e + g ) = W ,  and W h C W .  As above, W is a simple 

Artinian ring and ( Z ( W ) )  h = (F(e +g))h = 0 ,  SO the restriction of h to W is 

ad(B), for some B E W. Using e h = gh = 0 and e, g E W yields B = eBe + gBg, 

and then using (eRe) h= (gRg)" = 0 results in B = cle + c2g for cl, c2UF. It 

follows that (exg) h= [exg, B] = (c2-c~)exg, and so we may write (erg) h= 

[(g)erg for any r ~ R. If g'  E Ann({e, g}) is a nonzero idempotent,  then by what 

we have just shown, 

[(g + g')er(g + g') = (er(g + g,))h = (erg)h + (erg,)h = f(g)erg + [(g')erg', 

from which [ (g )= [(g + g ' ) =  f(g ' )  results. Now for any nonzero idempotents 

gz, g2 E Ann(e),  there is a nonzero idempotent g3 E Ann({e, g~, g2}), so f (g t )= 
f(g3) = [(g2). Therefore,  if x E eR(1 - e) and Rx = Rg for g2 = g, then x = erg 

and x h = fx, where ]: E F is independent of x E e R ( 1 -  e). A similar argument 

shows that y" = [ 'y  for each y E ( 1 -  e ) R e .  

Choose  x , y ~ R  so that x E ( 1 - e ) R e ,  y E e R ( 1 - - e ) ,  and x y ~ 0 .  Then 

xy E A n n ( e ) ,  so 0 = ( x y )  h = x h y + x y  h = ( / + / ' ) x y ,  resulting in [ = - [ ' .  But 

now x h =[x,f 'e] for x C ( 1 - e ) R e U e R ( 1 - e ) ,  and so h=ad(]:'e). Conse- 

quently, d = a d ( A + f e ) ,  for A + [ ' e ~ e R e ,  completing the proof of the 

theorem. 

Theorem 1 will be very useful, enabling us to conclude that all the derivations 

appearing in a PDI of minimal type are inner. Our next lemma will be used to 

eliminate PDIs of type (2, n) and illustrates the computation which leads to the 

application of Theorem 1. 

LEM~,IA 7. Let R be a non-Artinian simple ring and p a multilinear PDI of 

minimal type among PDIs satisfied by R. I[ x d either begins or ends a monomial 

appearing in p, then d is an inner derivation o[ R. 

PaooF. From Lemma 1 and the comments following Lemma 1, we may 

conclude that C a = 0, for C the centroid of R, that R = Soc(R), and that the 

division ring associated to R is finite dimensional over C We will assume that x ~ 
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starts a monomial ;  the proof in the other case is similar. Write p = xap~ + q, note 

that p, ~ 0 by the choice of d and Lemma  5, and observe that p~ is not a PDI  for 

R because it is of smaller type than p. For convenience, let p~ = p~(y~', . . . .  y~k, 

yk÷l . . . . .  y ,)  and choose r~, . . . ,  r, E R so that substitution of r, for y, into pt does 
d, not result in zero. Set B = {r~ , . .  ak ., rk, rk+t . . . . .  r.} and use Litott 's Theorem first 

to find an idempotent  e with B C eRe, and again to get e, e a EfRf .  If T = r(f), 
then for t ~ T, et = eat = 0 and so et d = 0. Substituting the r~ for the y~ and t for 

x in p results in Tdpl(ra~ ', . . . .  r ,)  = 0. The choice of {r~}, together with Lemma  3, 

yields TaT = 0. Use Litott 's  Theorem again to write f, f f  E gRg, and consider 

any idempotent  v E Ann(g).  Now v E Ann( f )C  T, so vaT = 0, or equivalently, 

v a E  l(r(f))= Rf, which means that vdf = v a. But v E A n n ( f ) n  Ann(/d) ,  and 

this implies that v a E Ann(f) .  Consequently,  v d = 0, so by applying Theorem 1 

to d and the idempotent  g, we may conclude that d is an inner derivation of R. 

Our  final lemma uses our previous results to show that the minimal types must 

be greater  than (2, n), for any n. 

LEMMA 8. Let R be a non-Artinian simple ring equal to its socle. I f  R satisfies 
a multilinear PDI of type (k, n), then k >=3. 

PROOF. By Lemma  6, k _-> 2, so it suffices to show that k = 2 is impossible. 

Suppose that R satisfies a multilinear PDI  of type (2, n), with n > 2 and n 

minimal. Using Lemma  5, write such a PDI  as 

p = xdpl(x3 . . . . .  x , )y  h + yhp2(x3 . . . . .  xn)x d. 

Note that neither pl nor p2 is zero by Lemma  3. Let T -- eR be a minimal right 

ideal of R, set L = l (T  d) ~ l (T+ T d) -- l(fR), and observe that L contains an 

infinite set of orthogonal idempotents  by Lemma  2, where B = {f} in that 

lemma. Evaluate p using x E T, y E R ,  and x~ E L  for i_->3, obtaining 

TapI(L)R h = 0. Using Lemma 3 we conclude first that Tapl(L)=0, and then 

that either pz(L)= 0 or T a C  T. Suppose first that p~(L)=0; then the ring 

L/((L n r(L)) satisfies the polynomial identity pl. Since R is a simple ring equal 

to its socle, L/((L f3 r(L)) is a simple ring which must be finite dimensional over  

its center by Kaplansky's  Theorem [4; Theorem 1, p. 226]. However ,  f rom our 

observation above, it follows that L/ (L  f3 r(L)) must contain an infinite set of 

orthogonal idempotents.  This contradiction shows that p~(L) # O. Hence,  T a C T 

for each minimal right ideal T of R, so L e m m a  4 forces d = 0. 

Our  argument  has shown that if p is a multilinear PDI  for R of type (2, n), for 

n minimal, then n = 2. Consequently,  p = xdy h + cy~x a, for some c E C. Since p 
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has minimal type among all PDIs satisfied by R, Lemma 7 allows us to write 

p =(xa  - a x ) ( y b - b y ) + c ( y b - b y ) ( x a  - a x )  for a,b E R .  

Substitute into p, replacing y with any r E R, and x E T = r(Ra + Rb + Rr)  to 

get T a ( r b -  br)= 0. The primeness of R gives aR h = 0, so either a = 0, which 

means d = 0, or h = 0 by Lemma 3. This contradiction to the definition of PDI 

proves the lemma. 

We now have all of the pieces needed to prove our main result, for special 

rings. From Lemma 8 we known that any multilinear PDI for a special ring must 

have type (k, n) with k > 3 ,  and from Example 2, there is a multilinear PDI of 

type (3, 3). By linearizing, this shows that any PDI of minimal degree must be of 

degree 3. We now show that there is essentially only one possibility for a PDI of 

minimal type (or degree). 

THEOREM 2. Let R be a special ring and p a PDI  for R of minimal type (k, n ). 

Then n = k = 3, p is linear in each variable, and p = pl + '"  • + P, where each p~ is 

a multilinear PDI  for R of type (3, 3) and satisfies: 

(1) p~ = c, S3(x,, y,,z,) is of type (3,3), where c, E F; 

(2) the three derivations asociated with p~ are all F-multiples of one another; 

and 

(3) each derivation associated with p~ has the form ad(a) for a E R with a 2 = 0 

and aR a minimal right ideal of R. 

PROOF. We begin by reducing to the multilinear case, using arguments 

similar to those in [1]. As in our earlier comments about linearization, if 

p = p(xl  . . . .  , x . )  then clearly both p(x~ . . . . .  x,_.~, 0) and p - p(x~ . . . . .  x,_~, 0) are 

PDIs for R. It follows easily that p = pt + " "  + pt where each variable in pi 

appears in each monomial of pi, and each/7, is a PDI for R, so is of type (k, n). 

Thus it suffices to assume that every variable of p appears in each monomial of p, 

and to show that p satisfies (1), (2), and (3) of the theorem. Suppose that 

k = D - deg p = 2. The linearization of p gives a multilinear PDI for R of type 

(2, n), contradicting Lemma 8. Thus, k => 3, and so k = n = 3 follows from the 

fact that p is of minimal type and from Example 2 showing the existence of a 

PDI for R of type (3, 3). In particular, because of our first reduction, p has at 

most three variables, and is multilinear if it has exactly three variables. Assume 

now that the theorem holds for multilinear PDIs of minimal type, but that either 

p = p ( x ) ,  or p = p ( x , y ) .  Suppose that c h a r R ~ 2 .  In the first case, c p =  

x 3 + ax 2 + bx for a, b, c E F, and the linearization of cp, which is the linearization 
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of  x 3, gives a multil inear P D I  for R of type (3, 3) which is not  an F-mult ip le  of 

Sdx ,  y, z) .  This contradicts  the theorem in the multi l inear case, so p = p(x,  y). 

By symmetry ,  we may  assume that p has a nonzero  monomia l  of  degree  two in x 

and degree one in y. But  now, linearizing p on x gives a multil inear P D I  for R of  

type (3,3) which is not  an F-mul t ip le  of S3(x, y, z).  

Now assume that char R = 2, so that linearizing cp = x 3 + ax 2 + bx gives the 

multil inear P D I  S3(x, y, z )  for  R. Since this is of minimal type, our  assumpt ion 

that  the theorem holds in the multi l inear case yields d = ad(r)  for r 2 = 0, and also 

that  r = err for e and f primitive o r thogona l  idempotents .  Clearly,  fd = r ,  so 

p( f )  = 0 means  br = 0, forcing b = 0. Choose  s E R with fse ~ O. T h e n  (fse) d = 

cl f  + c2e for ci ~ F -  {0}, so p( fse)  = c3~f + c~e + a(c~f  + cZ~e). It  follows that  

a = cl = c2. If F ~  GF(2) and c3 E F -  {0, 1, cl}, then p(c3fse) = 0 results in 

a = c3c~. This contradict ion shows that  F =  GF(2), so a = 1, and gRh  has 

exactly one  nonzero  e lement  for any primitive idempoten ts  g and h. Since R is a 

special ring, we may choose  a primitive idempoten t  g o r thogona l  to bo th  e and f, 

and choose  s, @ R so that t = fs lg + gs2e~ O. But now 0 = p( t )  = ( t d )  3 q- (td) 2 = 

erfs~gs2erf, which cannot  be zero by choice of the si. This contradict ion shows 

that  p ~  p(x ) .  

Turning  to the two variable case, assume cp = a~x2y + azxyx + a3yx2 + pl, 

where  p~ has degree two in y, and some a ~  0. Linearizing on x shows that  

a~(xzy + z x y ) +  a d x y z  + z y x ) +  a3(yxz + yzx )  is a multil inear P D I  for R of  

minimal type. As above,  assuming the theorem for multil inear PDIs  implies that  

a~ = a2 = a3 ~ 0 and that d = ad(r)  with r 2 = 0 and r = erf. Linearizing cp, and so 

p~ on y shows that the coefficients of p, are all equal,  so we may  assume 

cp = q(x, y)  + aq(y, x )  for q(x,  y)  = x2y + xyx + yx 2 and a E F. Since e and f 

are primitive, and R is special, there is t = fse so that t ~ = tr + rt = f + e. Note  

that f~ = r ,  so that  0 = c p ( t , f ) =  q ( t , f ) +  aq(f, t ) =  r. Hence ,  we must  conclude 

that  p ~  p(x,  y). Therefore ,  the theorem holds in general  if we can prove it when  

p is multil inear of type (3,3). 

By re-order ing the variables of  p and taking a suitable F-mul t ip le  of p, we may 

write 

(1) p = XlX2X3 + CIXIX3X2 W C2X2XIX 3 + C3X2X3XI+C4X3XIX2+C5X3X2XI° 

Our  first observat ion is that  the derivations for p, which we call d, h, and k 

respectively, are all inner. The  form of p and L e m m a  7 show that  d and k are 

inner  derivations,  with r ~ = ra - ar and r k = rt - tr for some a, t G R. Using 

Litoff 's  Theo rem,  there are idempotents  e and f so that  a, t  E e r e  and 

e, e h E fRf .  If g @ A n n ( f )  then gh @ A n n ( e )  C A n n ( a )  ¢3 Ann( t ) .  Eva lua te  p by 
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replacing xl with x d, x2 with g h ,  and x3 with yk, for any x, y E R, and then 

multiply the result on both sides by e to obtain - - a x g h y t - - c s t y g h x a  =0 .  

Replacing x with ex gives a R g h R t  = 0, and the simplicity of R forces g h  = O. 

Hence, we may apply Theorem 1 to h and the idempotent f and write 

r h = r b  - br for some b E R. For the remainder of the proof the letters a, b, and t 

will represent the elements of R which induce the derivations d, h, and k, 

respectively. 

The next series of computations will show that (2) and (3) of the theorem hold. 

After obtaining these we shall show that if p is given as in equation (1), then 

p = S3(x~, x2, x.O. Using Litoff's Theorem once again, there is an idempotent e so 

that a, b, t E e r e .  Choose any idempotent f U A n n (e )  and evaluate p using 

x~ = x ~ eRr, x2 = y ~ fRe ,  and x3 = z ~ eRe.  From equation (1) and the obser- 

vations x d ~- - -  a x ,  yh = yb, and xaz  k = zky" = 0, one obtains 

- a x y b z  k -  c 3 y b z k a x -  Cazkaxyb = 0, so right multiplication by e gives 

(2) a x y b ( z t  - tz ) + c , ( z t  - tz )axyb  = O. 

Since z E eRe  is arbitrary, using equation (2) we have first that axyb tRe  C R t  + 

Rb,  and then that R a x y b t R e  C R t  + Rb.  If axybt  = 0 for all choices of x and y, 

then the simplicity of R yields aRb t  = 0, and then bt = 0. On the other  hand if 

b t ~  0 then R e  C R t  + R b  follows from the simplicity of R, for every idempotent 

e satisfying a, b, t ~ eRe.  But dim(Rt + R b )  is fixed, and by Litoff's Theorem one 

can find a, b, t E eRe  with dim(Re) as large as desired. Therefore,  we must have 

bt = O. 

Using bt = 0, reduces equation (2) to 

(3) axybz t  + C 4 ( Z I  - -  tz )axyb  = O. 

Suppose that c, = 0. It would follow that a R b R t  = 0, so one of a, b, or t would be 

zero. Since none of these is zero, c4 ~ 0, and the free choice of z ~ eRe  in 

equation (3) shows that eR taxyb  C a R  + tR. As above, we must have ta = 0 and 

this reduces equation (3) to axybz t  = Cntzaxyb. It is now easy to see that 

r( t )  = r (b)  and l ( a )  = l( t) .  In particular, t ~ l ( r ( t ) )  = l ( r (b ) )  = Rb,  and simi- 

larly, b ~ Rt, resulting in R b  = Rt. Using l ( a )  = l ( t )  gives a R  = tR. 

Now evaluate p, as in equation (1), with the new choices of x, = x ~ e r e ,  

x2 = y E eRr, and x3 = z ~ fRe ,  where e and f are as above. The result is 

(4) - x~byz t  - c3byztx ~ - c4ztxdby = 0 

and right multiplication by f gives c4z t (xa  - a x ) b y  = 0. But we have shown that 

c4 ~ 0 and that ta = 0, so it follows that ab = 0, and equation (4) reduces to 
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(5) axbyz t  = c3byztxa. 

Arguments like those in the last paragraph show that c3 ~ 0, that R t  = Ra,  and 

that a R  = bR. Combining the information obtained so far shows that c3 ~ 0, 

cz ~ O, a R  = bR = tR, R a  = R b  = Rt, and bt = ta = ab = 0. It follows that any 

product of two elements from {a, b, t} is zero, so in particular, a 2= 0. 

Using equation (5), the choices represented by x, y, and z, and the simplicity of 

R, one has axbyt  = c3bytxa for any x, y ~ R. Since c3 ~ 0, [3; Lemma 1.3.2, p. 22] 

can be applied to conclude that aRb  C Fb. Consequently, a R  is a minimal right 

ideal of R, so of course R a  is a minimal left ideal. Write a R  = v R  and R a  = Rg, 

for v and g idempotents, so that v = a r = v a g r v  for some r E R .  Now 

b E v R  (7 Rg, so b = vbg = vagrvbg E v a g R g  = ca for some c ~ F, because 

a = rag and gRg  = gF. In the same way one shows that t E Fa, which proves (2) 

and (3) of the theorem. 

To complete the proof we need only show that p = $3(xl, x2, x3). From what 

was proven above, there is no loss of generality in assuming d = h = k, since p is 

multilinear. Substituting in p, as given in equation (1), with xl = x, x2 = y, and 

x3 = z for x, y, z ~ R, we may write 

(xa - a x ) ( y a z  a + c t z~y  a) + yap~ + zap2 = O. 

Thus, for y and z fixed, x a ( y a z  a + c ~ z a y a ) ~ a R  + y a R  + z a R  = T, for every 

x E R. Since dim(T) is finite and R a ( y a z  a + c~zdya)R  C T, we must conclude 

that a ( y a z  a + c ~ z a y ~ ) = O  for each choice of y ,z  E R .  By choosing z = y  and 

using a 2= 0, this expression reduces to (1 + c~)ayaya = 0, which means that 

(1 + c O a R  is a nil right ideal of R. Therefore,  we must conclude that c~ = - 1. 

As in the second paragraph above, using equation (5), and the fact that 

b, t E Fa, one can write axaya  = c3ayaxa for any x, y E R. Thus, (1 - c3)axaxa = 

0, which forces c3 = 1. We have just shown that if p = p(x~, x2, x3) as in equation 

(1), then ct = - 1. Since c3 = 1, if we view p = p(x2, x3, xl), then by symmetry, 

c2 = - 1 .  The same observations, starting with equation (3), show first that 

axbyt  = c4tyaxb for any x, y ~ R, then that c4 = 1, and finally, by considering 

p = p(x3, x~, x2), that cs = - 1. Consequently, p = S3(x ,  x:, x3), completing the 

proof of the theorem. 

Theorem 2 shows that, essentially, the only PDI of minimal type for a special 

ring is S3(x, y, z ) .  We want to argue that this same basic result holds for a PDI of 

minimal type satisfied by any prime non-PI ring. Of course one cannot expect the 

derivations will be inner, as is the case for special rings, as our next example 

shows. 
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EXAMPLE 3. Let  J be the ring of integers, so that Q(J)  is the field of rational 

numbers. In the ring of row finite countable by countable matrices over Q(J),  let 

T be the subring of matrices having only finitely many nonzero entries. Clearly, 

T is a special ring, and so by Theorem 2, T satisfies S3(xd, ya, z u) where 

d = ad(e~2), the inner derivation induced by the matrix unit e~2. If 

R = {(aij) E T I aii ~ 2 J  for all i and j}, 

then R is a prime ring with extended centroid C = Q(J), and R C  = T. Now 

d E D e r ( R )  and R C T, so S3(xd, yd, z ~) is a PDI for R. Although d is not an 

inner derivation of R, 2d is an inner derivation of R. 

Let  R be a non-PI prime ring satisfying a PDI p of minimal type. As in the 

beginning of the proof of Theorem 2, by substituting zero for sets of variables in 

p one can write p = pl + ' "  • + p,, where each pi is a PDI for R of the same type 

as p and each variable in pi appears in each monomial of pi. Assume for now that 

p = pl. Let  q be the linearization of p. The comments after Lemma 1 and 

Theorem 2 show that q = S3(x, y, z), regarded as a PDI for H Q c F ,  where C is 

the extended centroid of R, H = Soc(RC), and F is an algebraic closure of C. 

The argument in the beginning of Theorem 2 shows that p = q  = S3(x, y, z). 
Therefore  (3, 3) is the minimal type for PDIs and any such for any non-PI prime 

ring R is a C-linear combination of PDIs S3(x, y, z). What remains is to describe 

the derivations which can occur in this general case. 

Assume p = S3(x, y, z)  is a PDI for R. Then as a PDI for H •  F, as above, its 

derivations as elements in D e r ( H  @ F)  are described in Theorem 2. Let  d be the 

derivation acting on x, so that d is commutation with a = E hi @ f, E H Q F, 

where we may assume that {f~} is C-independent.  Identify R as R Q I t  and use 

the definition of R C  to find an ideal I of R so that Ihl C R and is nonzero. It 

follows that R O ( H Q  F ) #  0 so for any t E R N ( H Q  F)  

t d = ta - a t  = ~ [t, h i l Q f ,  ~ R  n ( H Q F ) ,  

since d E Der(R) .  Using the C-independence of {f~}, we may conclude that 

either a E H, or that It, hi] = 0 for i > 1, and fl ~ C. The second possibility would 

mean that hi centralizes the nonzero ideal R n ( H  Q F)  of R, and so would 

force hi C H n C = 0 for i >  1. Therefore,  we must have a E H. Now the 

derivations acting on y and on z must each have the form ad(a Q f)  for some 

f E F by Theorem 2, so by the argument just given f ~ C, and these derivatiorts 

are in Cd. 
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Of course we know that a 2= 0 and that a R C  is a minimal right ideal from 

Theorem 2. As in Example 3, the best one can do, in describing d in terms of R, 

is to show that Ca n R ~ O. This would show that a suitable C-multiple of p, and 

so of d, is a PDI for which the derivations are inner. Our final description of 

PDIs of minimal type will be an immediate consequence of our discussion above 

and our next theorem which shows that H is, essentially, a central localization. 

This result can be found in [10; Proposition 7.6, p. 50, and Theorem 7.7, p. 51], 

but we give a fairly easy argument for the sake of completeness. Recall that if 

Z ( A )  = Z is the center of a prime ring A, then A Z  -1 is the localization of A at 

the nonzero elements of Z. 

THEOREM 3. Let R be a prime ring which satisfies a generalized polynomial 

identity, set R C  = W, and let e E Soc(W) be a nonzero idempotent. The [ollowing 

hold: 

(1) D = R n eWe is a prime ring; 

(2) eWe = DZ(D)-1;  

(3) eC = Q F ( Z ( D ) ) ;  

(4) Soc(W)= (R O Soc(W))C; and 

(5) ]:or any h, . . . . .  h~ E Soc(W), there is c ~ C so that hic ~ R - {0} ]:or each i. 

PROOF. Since R satisfies a generalized polynomial idenitty, Soc(W) ~ 0 and 

eWe is a simple algebra finite dimensional over its center, eC [8]. For any 

nonzero ideal I of R, elCe is a nonzero ideal of eWe, so elCe = eWe must hold. 

Let V be a nonzero ideal of R satisfying 0 ~ Ve + e V  C R, and set I = V 2. Now 

eIe C eWe n R = D, so it follows that eWe = eICe C D C  C eWe. Therefore, 

eWe = DC, proving (1), and also that Z ( D )  C eC. The finite dimensionality of 

eWe over its center shows that D satisfies a polynomial identity, from which we 

may conclude that Z ( D ) ~ O  and that D Z ( D ) - '  is a simple algebra, finite 

dimensional over its center, Q F ( Z ( D ) )  [9]. But Z ( D ) C  eC, so eWe = D C  = 

( D Z ( D ) - I ) C  and the identity element of D Z ( D )  -~ is a central idempotent in 

eWe, forcing it to be e. To prove (3), let c E C-{0},  T an ideal of R with 

O ~ T c C R ,  and set B = ( V A T )  3. As above, eBe is an ideal of D, so 

D Z ( D )  - ~ = e B e Z ( D )  -~ so we may write e =ebez -~ for some b E B  and 

z E Z ( D ) .  Consequently, ce = ecbez -~ ~ D Z ( D )  -~ n Z ( e W e ) ,  and it follows 

that eC C Q F ( Z ( D ) ) .  This and the opposite conclusion obtained above gives (3), 

and also (2) since eWe = DC. 

Finally, given h i , . . . ,  h, E Soc(W), use Litoti's Theorem to find e E Soc(W) 

satisfying {hi} C eWe. Using (2), write hi = r~z -~ for r~ E R n eWe and 

z ~ Z ( R  n eWe) ,  with z = ec for some c E C by (3). Clearly, for each i, 
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h,c = hiec = hiz E R proving (5). Since (4) is a special case of (5), the theorem is 

proved. 

Theorem 3 and our earlier comments enable us to state our main result for 
prime rings. 

THEOREM 4. Among all PDIs satisfied by some non-PI prime ring, let p be of 

minimal type (k, n) and be satisfied by R. Then k = n = 3, p is linear in each of its 
variables, and p = pl +" "" + p,. where each pi is a multilinear PDI  for R of type 

(3, 3) and satisfies: 
(1) p~ = ciS3(xi, yi, zi) for ci E C; and 

(2) the derivations associated with p~ are all equal to ad(a) for a E R so that 
a 2 = 0 and a R C  is a minimal right ideal in RC. 

PROOf. The discussion preceding Theorem 3 shows that p = c~pl +" " +  cmpm 

where each p~ = S3(x, yi, zl) is a PDI for R with corresponding derivations di, hi 
and ki C-dependent and inner on Soc(RC). Also, if these derivations are, 
respectively, ad(w), ad(w/0, and ad(w/2) for ~ E C, then w 2 = 0 and w R C  is a 

minimal right ideal in RC. By Theorem 3, there is some t U C - { 0 } ,  so that 

tw E R. The multilinearity of S3(x~, yi, zi) yields S3(x~', y~', z~') = 
flf2t-aS3(xdi, y~, zdi) for d = ad(tw), proving the theorem. 
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